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Abstract
A pair of electrons in vertically stacked self-assembled quantum dots is studied and the
singlet–triplet energy splitting is calculated in an external electric field using the
configuration-interaction method. We show that for double quantum dots the dependence of the
singlet energy levels on the electric field involves multiple avoided crossings of three energy
levels. The exchange interaction, i.e., the energy difference of the lowest triplet and lowest
singlet states, can be tuned by an electric field in a wide range of several tens of meV. For
electric fields exceeding a threshold value the exchange interaction becomes a linear function of
the field when the two electrons in the singlet state start to occupy the same dot. We also
consider non-symmetric confinement, non-perfectly aligned dots, in horizontal as well as
vertical field orientation. In a stack of three vertically coupled dots the depth of the confinement
in the central dot can be used to enhance the exchange interaction. For a deeper central dot the
dependence of the exchange interaction on the electric field is anomalous—it initially decreases
when the field is applied in both directions parallel and antiparallel to the axis of the stack. Such
a behavior is never observed for a pair of quantum dots.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrons confined in coupled semiconductor quantum dots [1]
form orbitals which can be of extended—molecular or
localized—ionic character depending on the geometry of the
system, the interdot tunnel barrier thickness, and the applied
external fields. For two-electron states the character of electron
orbitals influences the exchange interaction [2], defined as the
difference between the lowest singlet and the lowest triplet
energy levels (J = Et − Es). In the absence of the
external magnetic field the energy of the lowest singlet [3–7]
is lower that of the lowest triplet unless the electrons occupy
separate spatial locations, when the singlet–triplet degeneracy
is obtained. The energy of the exchange interaction is a result
of a competition between the tunnel coupling, which prevents
the spatial separation of electrons, and the electron–electron
repulsion which pushes the electrons apart.

The exchange interaction energy is an important quantity
for quantum information processing that is based on spins of
electrons which are confined in an array of quantum dots [9].
In the model device [9] single spin rotations are performed

through a site-selective Rabi oscillation which is induced by
an external microwave radiation field. Two-qubit operations
are performed through controllable coupling of pairs of
electrons by tuning the height of the interdot barrier [2]. The
most advanced candidate for the implementation of the spin
quantum gate is the multiple-dot system realized in a gated
two-dimensional electron gas [10], in which the interdot barrier
is controlled by one of the gates which can turn the exchange
interaction on and off.

The exchange interaction should be as strong as possible
to allow for operation times shorter than the decoherence time.
The dots defined in the two-dimensional electron gas have a
large spacial extent; consequently it is intrinsically difficult
to strongly couple spins of electrons in a pair of such large
quantum dots. Even when the interdot barrier is completely
removed the electrons are likely to form a Wigner molecule
in the single merged dot. In Wigner molecules the confined
charge crystallizes in the form of separated single-electron
islands resulting in singlet–triplet degeneracy [8]. According
to a realistic model of double gated quantum dots the exchange
energy is only of the order of 0.1 meV [11]. Optimization of
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the interaction energy for laterally coupled dots has been the
topic of a number of recent theoretical papers [5, 12, 13].

In this paper we discuss the exchange interaction of two
and three vertically stacked self-assembled dots in an external
electric field. In stacked self-assembled dots the interdot tunnel
barrier is fixed at the growth stage. However, as we discuss
below, it is still possible to switch the exchange interaction on
and off by applying on electric field parallel to the axis of the
device. The exchange energies that we obtain for vertically
stacked quantum dots are two orders of magnitude larger than
the ones obtained earlier [11] for laterally coupled dots. Such
self-assembled dots are attractive for spin manipulation due to
the huge single-electron energy spacings of the order of tens
of meV, since the rotation of a single spin by the microwave
radiation should preferably leave the spatial states unperturbed,
i.e. without admixtures of higher excited states. Moreover, the
theory on coupled spin qubit operations [9, 2] is based on the
Heisenberg Hamiltonian Hs(t) = J (t)S1 · S2. The latter is
in fact a low-energy approximation assuming that the excited
states have higher energy than the lowest triplet and the lowest
singlet energy levels. For instance the two spins as described
by the Heisenberg Hamiltonian are swapped within the time τ
of the high J pulse such that

∫ τ
0 dt J (t) = h̄π . When more than

two states are involved in the spin exchange operation, the time
evolution of the system becomes complex [14] and the exact
duration of the on-state of the swap interaction necessary for
the spin exchange is difficult to predict. Due to the large energy
level spacings the coupled self-assembled dots best satisfy the
approximations underpinning Heisenberg Hamiltonian.

Vertically stacked self-assembled quantum dots in external
electric fields have recently become a very active research
field both experimentally [15, 16] and theoretically [17, 18]
in the context of photoluminescence measurements of exciton
recombination. The three-dimensional model of coupled
quantum dots and the configuration-interaction scheme for
diagonalization of the two-particle Hamiltonian that we use
here have been previously applied [18] to the Stark effect
in double dots. In the photoluminescence experiments the
spectral lines exhibit characteristic avoided crossings, which
on the one hand are due to hybridization of the single-particle
orbitals by the field and on the other hand are related to the
transfer of the particles between the dots [18]. The behavior
of the electron pair in the external field that we describe in
this paper can also be understood as due to avoided crossings
that occur separately for the spin-singlet and spin-triplet energy
levels. The applied model allows for the description of systems
that are not perfectly aligned and for an arbitrary orientation of
the electric field, since no symmetry of the system is assumed.
We also discuss the singlet and triplet energy levels in a stack
containing three quantum dots.

The exchange interaction in a vertical configuration of
quantum dots was previously studied [19] for gated structures
formed from etched double semiconductor quantum wells.
In these double quantum dots the lateral confinement is of
electrostatic origin and has a nearly parabolic form, which
is different from the quantum well-type confinement found
in self-assembled dots. For the electrostatic potential [19]
the in-plane electric field orientation (which we also consider

in the present work) is irrelevant for the low-energy part of
the spectrum, since it only shifts the origin of the harmonic
oscillator potential. Moreover, in vertical gated dots the
energy spacings between the single-electron energy levels are
of the order of 5 meV which is about ten times smaller than
in the system discussed here. The huge spacing between
the single-electron energy levels that we encounter in self-
assembled dots makes the role of the Pauli exclusion much
more pronounced than in both vertical gated and laterally
coupled dots. For all the structures, the probability to find both
electrons in the same dot is larger in the singlet than in the
triplet state. This effect can be used to enhance the exchange
interaction considerably by introducing intentional asymmetry
in the double-dot system [5]. For stacked self-assembled dots
it is almost impossible for electrons to occupy the same dot in
the triplet configuration at least in the range of electric fields
that we consider below.

2. Theory

The confinement potential of a single dot is modeled using a
disk quantum well model of depth V0, diameter R and height
2Z

W (r; X, ζ ; V0) = −V0

/ [(

1 +
(
(x − X)2 + y2

R2

)10
)

×
(

1 +
(
(z − ζ )2

Z 2

)10
)]

, (1)

where the center of the quantum well is placed at the point
x = X , y = 0 and Z = ζ . The geometrical parameters
of a single dot is borrowed from the experiment of [15] in
which manipulation of electrons and holes by an electric field
was realized. Namely we assume that the dots have diameter
2R = 20 nm and height 2Z = 4 nm. The depth of the
quantum well V0 = 508 meV is taken for a In0.66Ga0.34As
quantum dot [18] embedded in GaAs (we also use the electron
effective mass m = 0.037m0, the dielectric constant ε0 = 12.5
for this alloy). In a quantum dot with parameters listed above
the single-electron ground-state energy is about −255 meV,
i.e. as high as 253 meV above the bottom of the well. The
first excited state in this potential is the two-fold degenerate p
energy level (angular momentum ±h̄), whose energy is equal
to −187 meV. Therefore, the basic electron excitation in this
potential has energy �E = 68 meV (for a 2D infinite well
of R = 10 nm, �E = 92 meV is obtained). The spacings
between the states is much larger than the interaction energy.
For a single dot the interaction energy of two electrons in the
ground-state is about 23 meV. Therefore, for multiple dots
the wavefunctions for interacting electrons are predominantly
constructed from the single-dot ground-state wavefunctions3.
Nevertheless, the two-electron eigenstates are diagonalized in
a basis that includes not only p but also d orbitals (in fact the
basis contains 8 localized states per dot, see below).

3 Note that for ideally aligned dots s = 0 and the electric field applied in the
growth direction the two-electron states possess a definite angular momentum.
Only double lateral excitations (one electron in l = 1 and the other in
l = −1 state) can contribute to the wavefunctions of the low-energy part of
the spectrum that always corresponds to l = 0.
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The confinement potential of multiple dots is taken as a
sum of single-dot potentials. Figure 1 shows the cross section
of the confinement potential through the y = 0 plane for such
a pair of quantum dots, whose axes (dashed vertical lines)
are separated by s = 5 nm with a tunnel barrier between
the dots of thickness b = 6 nm (the centers of the dots
are spaced in the vertical direction by 2Z + b). The dots
are assumed to be identical in size and shape. A different
confinement of the dots is introduced through a potential well
depth variation. The depth variation is always small compared
to the depth of the confinement potential wells. For instance
the actual potential plotted in figure 1 was obtained as a sum
V (r) = W (r; 0, 10 nm , V0)+ W (r; 5 nm , 0, V0 + dV ) with
dV = 20 meV (the lower dot is assumed deeper in this plot).

We consider the Hamiltonian

H = h1 + h2 + e2

4πεε0|r12| + |e|F · (r2 + r1 − 2rx), (2)

where F is the electric field vector and rx is point in which
zero electrostatic potential is assumed, h1 and h2 are the single-
electron energy operators, with

h1(2) = − h̄2

2m∗ ∇2
1(2) + V (r1(2)). (3)

For the discussion of the results that follow it is convenient
to localize rx at the plane that passes through the center of the
lower dot exactly between the axes of the dots (see the point
marked by the star in figure 1). The eigenproblem for operator
H is solved using the configuration-interaction method with
the variational wavefunction constructed of (anti)symmetrized
products of single-electron wavefunctions

�(r1, r2) =
∑

i j

ci j (1 ± P12) fi (r1) f j (r2), (4)

where fi is the i th single-electron wavefunction, P12 is the
particle exchange operator and we take the + sign for singlets
(symmetric spatial function) and − for triplets (antisymmetric
spatial function). The single-electron wavefunctions are
obtained via diagonalization of Hamiltonian h1 in a basis of
Gaussian functions

f j (rp) =
∑

i

d( j)
i exp

[−αi
(
(x − xi)

2 + (y − yi)
2
)

− βi (z − zi )
2
]
, (5)

where d( j)
i are the linear variational parameters for the j th

wavefunction, αi , βi are the nonlinear variational parameters
describing the localization strength of the i th Gaussian around
point (xi , yi , zi ). We apply 8 Gaussian centers per dot (see
figure 1(b)): two Gaussians are localized in the center of
each dot, four Gaussians are placed on a circle around the
axis of each dot within the symmetry plane of the dot and
an additional two Gaussians are localized at the symmetry
axis of the dot. Precise positions of the Gaussians as well
as the values of the localization parameters are optimized for
the description of the single-electron states in the absence
of the field. In the present approach the electric field is
accounted for along with the electron–electron interaction
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Figure 1. (a) Cross section of the confinement potential for a pair of
quantum dots calculated at y = 0 plane. Dashed vertical lines show
the center of the dots. The height of the vertical barrier is b = 6 nm
and the dots are displaced by s = 5 nm with respect to each other.
The lower dot is deeper by 20 meV. The star indicates the zero of the
external electric field potential. The arrow indicates the direction of
the electric force acting on electrons for F > 0. (b) Schematic
drawing of the positions of the Gaussian centers in the multicenter
basis. The four centers on the two circles are localized within the
plane of confinement of each dot. Two Gaussian centers are localized
in the center of the dot, and one above and one below the center.

only at the stage of the diagonalization of the two-electron
Hamiltonians. The single-electron basis obtained for F = 0
is flexible enough to account for the electric field effect in the
range considered below. Results obtained with this approach
are compared below to the results of the finite difference
approach and a very good agreement is demonstrated. A
Gaussian basis for single-electron wavefunctions is more
suitable for diagonalization of the two-electron eigenproblem
than the wavefunctions obtained on a mesh of points with the
finite difference approach, since it allows for a much faster
integration of the interaction matrix elements.

Below, we occasionally refer to the total parity of the
two-electron wavefunctions. It is a good quantum number for
identical quantum dots, for which �(I r1, I r2) = ±�(r1, r2),
where I is the inversion operator with respect to the center of
the stack. The wavefunctions which are invariant with respect
to this operation have the even total parity, and the ones which
change sign have the odd total parity.

3. Results

3.1. Single-electron states

Figure 2(a) shows the electric field dependence of the two
lowest energy states for a pair of identical dots separated by a
barrier with thickness of b = 2, 4, 6 and 11 nm. At F = 0
the ground-state wavefunction is a binding orbital, and the
first excited state wavefunction is an antibinding orbital (see
figure 2). The binding orbital can be constructed as a sum of
single-dot wavefunctions

ψb = 1√
2
(ψ1 + ψ2), (6)

where ψ1 and ψ2 are the ground-state wavefunctions of the
lower and the upper dot assumed both real and non-negative
everywhere (the wavefunctions presented in figure 2(d) are

3
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Figure 2. (a) Two lowest energy levels of a single electron in a pair of identical and perfectly aligned dots with the field oriented along the
growth direction for b = 2, 4, 6 and 11 nm. The crosses show the b = 4 nm results as calculated with the finite difference method. Right
figures show the binding and antibinding orbitals calculated for b = 6 nm. ((b)–(d)) Figures show functions of the ground-state and the first
excited state for F = 0, 12 and 100 kV cm−1, respectively. Dashed line shows the zero of the wavefunction.

nearly the single-dot wavefunctions). The antibinding orbital
is constructed as the difference of the single-dot wavefunctions

ψa = 1√
2
(ψ1 − ψ2). (7)

For F > 0 the electric field tends to localize the ground
(excited) state in the lower (upper) dot, which results in a
reduction of the electron tunnel coupling between the identical
dots. The breaking of the tunnel coupling is associated with
the avoided crossings of the two energy levels (see figure 2(a)).
The width of the avoided crossing is a measure of the electron
tunnel coupling strength between the dots. For b = 2 nm
the energy splitting of the binding and antibinding states is
of the order of 100 meV, while for b = 11 nm the splitting
is only 0.74 meV. In a strong electric field both the ground-
state and the first excited state become localized in a single
dot (see figures 2(c, d)). Outside the avoided crossing one of
the two energy levels becomes almost independent of F (see
figure 2(a)). This state is localized within the lower dot, where
the electric potential is taken to be zero. At F � 0 the state
localized in the lower dot is the first excited state, and at F � 0
this state is the ground-state (see figure 2(d)).

The crosses in figure 2(a) show the energy levels as
obtained with the finite difference approach for b = 4 nm.
The results were obtained on a mesh of 43 × 43 × 43 points
spaced by 1 nm in each direction using the imaginary time
technique [20]. We see that the values agree very well with the
ones obtained using the multicenter basis (the solid curves).

3.2. Two-electron states in the absence of the electric field

The low-energy part of the spectrum for the electron pair is
plotted in figure 3 as function of the interdot barrier thickness.

-440

-480

-520

-560

E
 [m

eV
]

4 6 8 10
b [nm]

Figure 3. Lowest energy levels for the two-electron system in the
case of two perfectly aligned identical dots spaced by a barrier of
thickness b. Dotted black curves show the results for non-interacting
electrons. The ground-state and the second excited state of the
non-interacting system are non-degenerate and correspond to
spin-singlets. The first excited state is degenerate and contains a
singlet state and a triplet state. Dashed and solid curves correspond
to the case of interacting electrons. The dashed curve shows the
spin-triplet and the solid lines the spin-singlet. Inset: exchange
energy for two interacting electrons (solid line) and for
non-interacting electrons (dotted curve).

Dotted curves in figure 3 show the lowest energy levels of
the non-interacting system. All the presented non-interacting
energy levels tend to degeneracy for large b. For any b,
in the absence of electron–electron interaction the ground-
state wavefunction is a simple product of single-electron

4



J. Phys.: Condens. Matter 20 (2008) 395225 M P Nowak et al

-4 0 4 8

z
1

[nm]

-4

0

4

8

z 2
[n

m
]

-4

0

4

8

z 2
[n

m
]

-4

0

4

8

z 2
[n

m
]

-4

0

4

8

z 2
[n

m
]

-4 0 4 8 12

z
1

[nm]
-5 0 5 10 15

z
1

[nm]

-4 0 4 8 12

z
1

[nm]

b=3 nm                6 nm                      6 nm                  11 nm

(a)                         (b)                         (c)                        (d)

(e)                          (f)                         (g)                        (h)

(i)                          (j)                          (k)                         (l)

(m)                        (n)                        (o)                        (p)

(noninteracting)

Figure 4. Contour plots of the wavefunction for two electrons in vertically coupled identical quantum dots that are separated by a barrier with
thickness b = 2, 6 and 11 nm in the absence of an electric field (F = 0). Results are shown in the z1, z2 plane, the second column shows the
results for b = 6 nm with neglected electron–electron interaction. Plotted for y1 = x1 = y2 = x2 = 0. Thick dashed lines indicate the zeros of
the wavefunction. Plots ((a)–(d)) correspond to the ground-state (spin-singlet with even parity), ((e)–(h)) to the first excited state (spin-triplet
with odd parity), ((i)–(l)) to the second excited state (singlet with odd parity) and ((m)–(p)) to the third excited state (singlet with even parity).

binding orbitals

�0(r1, r2) = ψb(r1)ψb(r2). (8)

Substituting the definition of the binding orbital we obtain the
expression

�0(r1, r2) = 1
2 (ψ1(r1)ψ1(r2)+ ψ2(r1)ψ2(r2)

+ ψ1(r1)ψ2(r2)+ ψ2(r1)ψ1(r2)) . (9)

The ground-state wavefunction of the non-interacting pair
for b = 6 nm is plotted in figure 4(b). The wavefunction is
calculated along the axis of the system (x1 = y1 = x2 =
y2 = 0) as a function of the vertical coordinates of the two
particles. The wavefunction possesses four identical maxima
that correspond to electrons localized in the centers of the dots.
The ground-state energy level is shifted down with descending
interdot barrier thickness (see figure 3).

When the interdot barrier becomes thinner the binding
energy level goes down and the antibinding level goes up on the
energy scale. In the first excited state one of the electrons is in
the binding orbital and the other in the antibinding orbital. The

sum of the single-electron energies for the first excited state is
nearly independent of b (see figure 3) since the energy shifts
of binding and antibinding energy levels nearly cancel. In the
absence of the interaction the second excited energy level is
degenerate with respect to the spin of the electron pair. The
wavefunctions for both degenerate states can be written as

�(r1, r2) = 1√
2
(ψa(r1)ψb(r2)± ψa(r2)ψb(r1)), (10)

where + corresponds to the spin-singlet and − to the spin-
triplet. These wavefunctions may be expressed in terms of the
single-dot wavefunctions

�ot(r1, r2) = 1√
2
(ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)), (11)

for the odd triplet and

�os(r1, r2) = 1√
2
(ψ1(r1)ψ1(r2)− ψ2(r2)ψ2(r1)), (12)

for the odd singlet. The wavefunction for the spin-triplet is
plotted in figure 4(f) and for the spin-singlet in figure 4(j).
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We see that for self-assembled dots in the spin-triplet state
electrons occupy opposite dots. The antisymmetry of the
wavefunction by itself does not strictly forbid electrons in
the triplet state from occupying the same dot. Electrons may
stay in the same dot but in different orbitals. The absence of
double occupancy observed in figure 4(f) is due to the very
high-energy distance between the ground-state and the first
excited state for a single self-assembled dot. For planar dots
the probability of finding electrons in the same dot is lower
than for ground-state, but it is not zero [5]. On the other hand
for the excited singlet non-zero values are allowed only at the
diagonal (z1 = z2, both the electrons occupy the same dot).

The wavefunction for both the odd triplet and the odd
singlet states changes sign under point inversion with respect
to the symmetry center of the system (z1, z2) = (5, 5) nm. The
spin-triplet is antisymmetric with respect to inversion through
the z1 = z2 line, which corresponds to an interchange of
the particles (see figure 4(f)). The corresponding plot for
the spin-singlet is invariant with respect to this operation (see
figure 4(j)).

In the second excited state for the non-interacting pair both
the electrons are in the antibinding orbitals. This state is the
spin-singlet with even total parity, i.e. it has the same symmetry
as the ground-state. The wavefunction is

�3(r1, r2) = ψa(r1)ψa(r2), (13)

or in terms of the single-dot wavefunctions

�3(r1, r2) = 1
2 (ψ1(r1)ψ1(r2)+ ψ2(r1)ψ2(r2)

− ψ1(r1)ψ2(r2)− ψ2(r1)ψ1(r2)) . (14)

Similarly as for the ground-state both electrons have equal
probability to be in the same or in opposite dots (see
figure 4(n)).

Let us now turn our attention to the interacting system.
The solid and dashed lines in figure 3 show the lowest
energy levels for interacting electrons for spin-singlets and
spin-triplets, respectively. The third column of plots in
figures 4(c), (g), (k), (o) show the wavefunctions for interacting
electrons and b = 6 nm. This column of plots should
be compared to the second one (figures 4(b), (f), (j), (n))
discussed above, which corresponds to the same b but with
the interaction switched off. We see a clear correspondence
between pairs of wavefunctions with and without the electron–
electron interaction (see figures 4(b) and (c), (f) and (g), (j)
and (k), (n) and (o)). When the interaction is included, for the
ground-state (figure 4(c)) the two maxima on the antidiagonal
of the plot—corresponding to separated electrons—increase at
the expense of the two maxima at the diagonal of the plot.

The wavefunctions of the lowest triplet and the first
excited singlet are only slightly influenced by the interaction
(compare figures 4(f), (g) and (j), (k)). Wavefunctions are not
affected by the interaction since in the low-energy subspace
spanned by ψ1 and ψ2 single-electron wavefunctions there are
no extra combinations allowed having the required symmetry.
The interaction lifts the degeneracy of the odd singlet and the
odd triplet. The triplet becomes the lowest excited state in the
presence of the interaction (see figure 3).

In contrast to the odd energy levels the interaction
significantly changes the wavefunctions of the even energy
levels: the ground-state and the third excited state. Both these
states are singlets so the mixing does not perturb neither the
spatial nor the spin symmetry. In the wavefunction of the third
excited state (the first excited singlet state of even parity—
figure 4(o)) we notice an opposite tendency in the electron
localization to the one observed in the ground-state. The
electrons in this state are more probably found in the same dot.
This is a consequence of the orthogonality of this state to the
ground-state, which is of the same spatial and spin symmetry.
The reaction of the ground-state and the third excited state
to the interaction is, in fact, due to the mixing of the non-
interacting wavefunctions �0 and �3 by the electron–electron
interaction.

The extent to which the non-interacting states �0 and �3

are mixed by the interaction depends on the ratio of the tunnel
coupling energy (difference in the single-electron binding and
antibinding energy levels) and the electron–electron interaction
energy. For b = 6 nm the interaction energy (in the
ground-state it is equal to �13.7 meV) is comparable to the
spacing between the binding and antibinding energy levels
(�9.1 meV). The wavefunctions for the interacting electrons
at the barrier thickness of b = 3 nm are presented in
figures 4(a), (e), (i), (m). For b = 3 nm the ground-state
interaction energy and the binding–antibinding energy level
splitting are equal to �16.7 and �47.9 meV, respectively.
In fact, the wavefunctions are only slightly affected by the
interaction. We notice that in the ground-state the maxima
on the antidiagonal are only slightly higher than the ones on
the diagonal (see figure 4(a)). The same applies for the third
excited state figure 4(m).

The wavefunctions in the weak coupling limit (i.e. b =
11 nm) are presented in the last column of figure 4. In
the ground-state (see figure 4(d)) we find along the diagonal
only a residual presence of two maxima. The ground-state
wavefunction in the weak interaction limit can be written as

� = 1√
2
(�0 −�3) = 1√

2
(ψ1(r1)ψ2(r2)+ ψ1(r1)ψ2(r2)),

(15)
while the wavefunction of the excited even-parity singlet is

� = 1√
2
(�0 + �3) = 1√

2
(ψ1(r1)ψ1(r2)+ ψ2(r1)ψ2(r2)).

(16)
In the state described by equation (15) both electrons occupy
different dots, while in the state corresponding to the
wavefunction equation (16) both electrons are in the same dot.

Note that for the weak coupling case the probability
density for the ground-state (lowest spin-singlet—figure 4(d))
approaches the one for the first excited state (lowest spin-
triplet—figure 4(h)). Consequently the energies of these two
states become degenerate at large b (see figure 3). The
two excited spin-singlet states—the one of the odd parity
(figure 4(h)) and the other of the even parity (figure 4(p)) also
correspond to the same probability density distribution and the
corresponding energy levels become degenerate for vanishing
tunnel coupling at large b (see figure 4). Note that the energy of
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the degenerate ground-state decreases with b, while the energy
of the degenerate excited state at large b is independent of the
barrier thickness (figure 3). In the degenerate excited state
both electrons occupy the same dot so the distance to the other
(empty one) is irrelevant. For separated electrons the energy
decreases with b. In the infinite b limit the ground-state energy
for interacting electrons decreases to the ground-state energy
for non-interacting electrons.

The inset to figure 3 shows the exchange energy (taken as
an energy difference of the lowest triplet and lowest singlet
states) as function of b for interacting (solid line) and non-
interacting (dashed line) electrons. The exchange energy tends
to zero when the electrons become separated into the different
dots. Then, according to the discussion given above, only the
electron distribution and not the spatial symmetry determines
the energy of the state. In both, the lowest singlet and the
lowest triplet states the separation of the electrons is enhanced
by the interaction: hence the decrease in the exchange energy
obtained for interacting electrons at larger b. For smaller values
of b the interdot tunnel coupling effects are dominant and the
interaction has a negligible effect on the exchange energy.

3.3. Exchange interaction when the electric field is oriented
vertically

Figure 5 shows the wavefunctions of the four lowest energy
states when an electric field is applied parallel to the axis of
the dots for b = 6 nm (for the corresponding wavefunctions
in the absence of the field see figure 4(c), (g), (k), (o)). The
corresponding energy levels are displayed in figure 6(b). In the
ground-state, already for F = −12 kV cm−1 the probability of
finding both electrons in the lower dot is nearly zero (compare
figure 5(b) with figure 4(c) for F = 0). For a larger electric
field of F = −50 kV cm−1 (figure 5(a)) the electrons in
the ground-state both become localized in the upper dot. For
F � 0 both electrons in the ground-state occupy the lower dot,
where the electric field potential is zero, hence no dependence
on F is observed for the ground-state at the positive F side.
On the other hand the ground-state energy at F � 0 decreases
linearly with F (see figure 6(b)).

The lowest triplet energy level has a linear dependence
on F on both sides of the F = 0 (see the dashed line in
figure 6(b)). For the negative F the slope of this dependence
is half that of the ground-state. The reason is that in the
triplet state at strong |F | one of the electrons becomes localized
in the lower dot where the electrostatic potential is taken to
be zero and the slope is only due to the other electron that
remains in the upper dot (see figures 5(c), (e)). Note, that a
similar F-dependence is found for the first excited singlet state
outside the small F range. In the second excited singlet state
both electrons occupy the dot in which the electric potential is
largest (see figures 5(g), (h)).

From non-degenerate perturbation theory we know that
the dependence of the energy on the perturbation is linear
when the wavefunctions are not modified by the perturbation.
Curvature (non-zero second derivative) of the energy levels on
F is only observed when the electron distribution is changed by
the field. In figure 6(b) we notice that the lowest triplet energy
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Figure 5. The same as figure 4 but for b = 6 nm for two different
values of the electric field.

level is linear with F in the entire electric field range shown in
figure 6(b) except near F = 0. Its wavefunction does not react
to the field (see figures 5(c), (d) as well as figure 4(k)), because
in the triplet state the transfer of the electrons from one dot to
the other is blocked by the Pauli exclusion principle.

Figure 6(b) shows that the energies of the singlet states
are nonlinear functions of F within the range of small electric
fields. The electric field leads to an avoided crossing of
these three energy levels, to mixing of the corresponding
wavefunctions and associated transfers of the charge between
the two dots. No avoided crossing is observed for the lowest
triplet state. In the low-energy part of the spectrum the lowest
triplet has no partner of the same spin symmetry to mix with,
hence its linear dependence on F .

For the barrier thickness of b = 11 nm the avoided
crossing between the singlet states are so narrow that with the
energy scale in figure 6(c) they appear effectively as crossings
of energy levels (see figure 6(c) and compare it to figure 6(b)
for b = 6 nm). The exchange energy for b = 2, 6 and
11 nm is displayed in figure 6(d) as function of the electric
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Figure 6. (a)–(c) Four lowest energy states for the electron couple in a pair of perfectly aligned quantum dots separated by a barrier thickness
of b = 2, 4 and 11 nm for the electric field oriented along the growth direction. The zero of the electrostatic potential is taken in upper/lower
dot. A positive field pushes the electrons up/down. Solid blue curves show the spin-singlet and the red dashed curve the spin-triplet energies.
(d) shows the exchange energy as function of the electric field for b = 2 nm (blue curve) b = 6 nm (red curve) and b = 11 nm (black curve).
The inset shows the exchange energy for b = 11 nm for electric fields close to zero.

field. For b = 11 nm the exchange energy is nearly zero for
F ∈ (−10, 10) kV cm−1 (see inset). It increases linearly with
F when the near crossing of singlet states occurs in figure 6(b).
The linear increase occurs when in the lowest singlet state both
electrons occupy the same dot, while in the lowest triplet state
the electrons occupy different dots. For b = 6 nm the exchange
energy is a smooth function of F . The minimum value of the
exchange energy occurs for F = 0. When an electric field
is applied to the system the triplet state does not react to the
field. On the other hand, in the singlet state the electrons start
to occupy the deeper dot. As a consequence, when the electric
field is applied the singlet state lowers its energy with respect
to the triplet state, hence the minimum of the exchange energy
at F = 0. A similar minimum is also observed for the strongly
coupled dots (see the curve for b = 2 nm in figure 6(d)).
This minimum is now much shallower, since the reaction of
the singlet state to the field is reduced by the strong interdot
tunnel coupling. In this electric field range the double dot with
b = 2 nm appears as a single potential cavity.

Figure 7 shows the effects of (i) non-perfect alignment,
and (ii) when there is a difference in the depth of the dots on
the exchange energy for an electric field oriented in the growth
direction. The red dashed curve was obtained for identical
dots but with the axes of the dots shifted by about s = 3
nm along the x axis. The non-perfect alignment results in
a reduced electron tunnel coupling, hence the reduction of
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40
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b=6 nm
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s=3 nm
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V=30 meV
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Figure 7. Exchange energy for an electron pair in a double dot with
interdot barrier thickness of b = 6 nm in a vertical electric field. The
solid black line shows the case of identical perfectly aligned (s = 0)
dots. The dashed red curve shows the result for identical dots that are
shifted by s = 3 nm. The dotted curve corresponds to aligned dots
with the lower one deeper by 30 meV.

exchange energy with respect to the case of perfect alignment
(black solid curve in figure 7). The blue dotted curve in figure 7
represents the exchange energy that is obtained for perfectly
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aligned but non-identical dots. The upper dot is assumed
deeper by 30 meV. In the absence of the field the asymmetry
of the dot confinement leads to a strong enhancement of the
exchange energy. The reason is that both electrons in the
singlet state are allowed to occupy the deeper dot which is
forbidden for the triplet through the Pauli exclusion principle.
The asymmetry effect is reduced for positive F , which favors
the lower dot and compensates for the asymmetry in the depths
of the two dots. In the singlet state a nearly equal occupancy
of both dots is obtained near F = 22 kV cm−1, for which the
exchange interaction is weakest.

3.4. Lowest singlet and triplet states for an electric field
perpendicular to the growth axis

As long as the electric field is applied in the vertical direction
the effect of the non-perfect alignment is simply to reduce
the tunnel coupling between the dots. Only when the electric
field is oriented perpendicular to the growth direction has the
non-perfect alignment a qualitative effect on the spectrum. In
figure 8 we show the ground-state and the first excited energy
levels for identical dots that are shifted by s = 5 nm along the
x-direction. We apply a weak electric field of F = 20 kV cm−1

which we rotate in the (x, y) plane. The electric field direction
is F = F(sin(φ), cos(φ), 0). For ideally aligned dots (s = 0)
rotation of the electric field vector has practically no influence
on the energy spectrum. In figure 8 we see that the ground-state
energy is minimal when the electric field is aligned with the x
axis, i.e. with the direction of the shift between the dots. The
ground-state wavefunction is localized in the dot that is shifted
down in energy due to the electric potential. The oscillation of
the excited state energy with φ is in anti-phase with the one in
the ground-state energy. When the ground-state wavefunction
occupies the deeper dot the excited state wavefunction goes
necessarily to the shallower dot by the orthogonality constraint.
Note that the average of the two energy levels is independent of
the electric field orientation (see the dashed curve in figure 8).
The curves presented in figure 8 were obtained in the Gaussian
basis, while the crosses in figure 8 show the results from the
finite difference approach. The finite difference method and
the Gaussian basis approach produce very similar results. In
the Gaussian basis we apply four centers forming a cross in the
x − y plane. The granularity of the Gaussian basis is not visible
in the results for the rotated electric field, although in principle
one could be concerned about this issue.

In figure 9(a) we display the three lowest singlet energy
levels (solid blue curves) and the lowest triplet energy level
(red dashed curve) for a pair of electrons confined in two
vertically coupled dots as were considered in figure 8. We
see that for non-zero s the ground-state energy is minimal
when the electric field is parallel to the x axis, i.e., when
the field is aligned with the direction of the shift between the
dots. The ground-state energy is maximal for the electric field
perpendicular to the shift between the centers of the dots. The
evolution of the two-electron ground-state energy follows the
trend set by the single-electron ground-state (figure 8).

Figure 10 shows the charge density in the lowest singlet
(lower panels ((a), (b))) and the lowest triplet (upper panels

0 1 2
-270

-260

-250

-240

E
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m
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)

ground-state

first-excited state

(ground+excited)/2

φ/π

Figure 8. Solid lines show the ground-state and the first excited
energy levels for a single electron in a double dot with interdot
barrier b = 6 nm and axes of the two identical dots shifted by
s = 5 nm as a function of the orientation of a weak electric field of
F = 20 kV cm−1 that is perpendicular to the growth direction. For
φ = π/2 (parallel) and φ = 3π/2 (antiparallel) the field is aligned
along the x axis (i.e. the direction of the shift between the dots) (see
the inset). The dashed curve shows the arithmetic average of the two
energy levels. The crosses indicate the results of a finite difference
approach.

((c), (d))) for the electric field oriented along the y-direction
(left panels) and along the x-direction (right panels). For
the electric field oriented in the y-direction (figures 9(a), (c))
each of the dots in both the singlet and the triplet contains
a single electron. When the field is redirected to the x-
direction (figures 9(b), (d)), the charge in the lower dot,
preferred by the electric potential, is increased in the singlet
state, which lowers the ground-state energy. In the triplet
state we notice no transfer of the electron charge to the
lower dot, which is forbidden by the Pauli exclusion principle.
Consequently, the energy of the triplet state is independent
of the electric field orientation (see figure 9(a)). This can
also be understood as due to the fact that the lowest triplet
wavefunction is predominantly built up of an antisymmetrized
product of the single-electron wavefunction of the ground-state
and the single-electron wavefunction of the first-excited-state.
The sum of those single-electron energies is independent of
the electric field orientation (see figure 8). Moreover, in the
triplet the electron–electron interaction energy should also be
independent of φ since no redistribution of the electron charge
between the dots is observed in the triplet state (see figure 10).

The thick gray line in figure 9(a) shows the exchange
energy as function of the electric field orientation. It is
maximal for the electric field oriented parallel to the x axis,
when the singlet lowers its energy by double occupancy of the
dot that is shifted to lower energy by the electric field. The
double occupancy of the deeper dot is blocked for the triplet
state.

Figure 9(b) shows the effect of the electric field rotation
when one of the dots of figure 9(b) is made deeper by 20 meV.
Similarly, as in the case of identical dots, the triplet energy
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Figure 9. (a) Solid blue and dashed red curves show the four lowest
energy levels of an electron pair as function of the orientation in the
(x, y) plane of a weak electric field F = 20 kV cm−1. The two
identical dots are shifted by s = 5 nm and are separated by a barrier
with thickness of b = 6 nm. The energy levels are referred to the left
axis. The thick gray curve shows the exchange energy and is referred
to the right axis. (b) The same as (a) but where the lower dot is
deeper by 20 meV. For φ = 3π/2 the electric force acting on the
electrons is directed towards the deeper dot. In both cases the
exchange energy is equal to the spacing between the lowest solid and
the lowest dashed curve.

does not depend on the electric field orientation. For φ =
π/2 the electric field potential compensates for the non-equal
confinement depths of the dots. This results in a maximal
ground-state energy. The asymmetry in the depth of the dots is
increased for φ = 3π/2, which coincides with the minimum of
the ground-state energy. Variation of the ground-state energy
is directly translated into the φ dependence of the exchange
energy. Note, that for non-identical dots the amplitude of the
variation of the exchange energy with φ is much larger as
compared to the case of identical dots (cf figures 9(a) and (b)).

3.5. Stack of three identical dots

A contour plot of the wavefunctions for the lowest singlet
and triplet energy levels of a non-interacting pair of electrons
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Figure 10. Charge density for the ground-state ((a), (b)) (lowest
singlet) and the first excited state ((c), (d)) (lowest triplet) for two
identical dots displaced by s = 5 nm in a weak electric field of
20 kV cm−1 directed within the (x, y) plane. In ((a), (c)) the electric
field is oriented perpendicular to the x axis. In ((b), (d)) the electric
force for electrons is directed to the left (see the arrow).

in a stack of three dots are displayed in figure 11 in the
(z1, z2)—plane for y1 = x1 = y2 = x2 = 0. The dots
are assumed perfectly aligned, identical and separated by an
interdot barrier of thickness b = 6 nm. The ground-state (see
figure 11(a)) wavefunction possesses 9 maxima, corresponding
to both electrons localized in one of the three dots. The global
maximum of the wavefunction occurs for both electrons in
the central dot. In the triplet state only 6 extrema of the
wavefunction are obtained; the electrons never occupy the
same dot, hence the wavefunction extrema at the diagonal are
missing. Of the 6 extrema the largest ones are associated with
electrons occupying opposite ends of the stack, in spite of the
fact that the interaction is neglected in this plot. However, the
probability to find one electron in the central dot and the other
in an adjacent one is also significant (see the extrema when one
of the coordinates is equal to zero and the other is ±10 nm).

The wavefunctions for the lowest energy singlet and
triplet states in the presence of the interaction and for the
same parameters of the external potential are displayed in
figures 12(a) and (e), respectively. The interaction enhances
the maxima that correspond to electrons localized at opposite
ends of the stack. In the lowest singlet plot the local extrema
at the diagonal of the plot are visibly decreased (compare
figures 12(a) and 11(a)).

The effect of the vertical electric field on the energy
spectrum of the stack is shown in figure 13. Similarly, as in
the case of two dots, the ground-state reacts to the electric
field more readily than the lowest triplet state which leads
to an enhancement of the exchange interaction. In contrast
to the double-dot case the energy of the triplet state is not
a linear function of the electric field. The difference to the
double-dot case is that the triplet wavefunction is modified by
the external electric field which results in the non-linearity.
The lowest triplet wavefunctions for non-zero F are presented
in figures 14(c), (d). When an electric field is applied, the
electrons in the triplet state tend to occupy only the middle and
uppermost dot within the stack. For stronger F in the singlet
both electrons occupy the uppermost dot figures 14(a), (b).
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Figure 11. The same as figure 4 for a pair of non-interacting electrons, but now in a stack of three dots that are equally spaced by a barrier
with thickness of b = 6 nm, (a) corresponds to the ground-state (lowest singlet) and (b) to the first excited state (lowest triplet).
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Figure 12. The same as figure 11 but now for interacting electrons. In the first column (a), (e), (l), (m) the dots are identical. In subsequent
columns the central dot is deeper by �V = 10, 30 and 40 meV. The lowest row ((a)–(d)) corresponds to the ground-state, ((e)–(h)) to the
lowest energy triplet, ((i)–(l)) to the first excited singlet, and ((m)–(p)) to the first excited triplet.

3.6. Vertical stack of three dots with deeper a central dot

The wavefunctions of two lowest energy singlets and two
lowest energy triplets are displayed in figure 12 for increasing
depth of the central dot �V . As �V grows the central dot is
occupied by a single electron in the triplet state, and by both

electrons in the singlet state. The first excited singlet plotted
in figures 12(i)–(l) has odd parity. It possesses a nodal surface
on the antidiagonal of the plot. Similarly as in the triplet state
only one electron occupies the central dot as �V increases.
The first excited triplet state has even parity. It possesses two
nodal surfaces at both the antidiagonal and the diagonal of the
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Figure 13. Singlets (blue solid) and triplet (red dashed) energy levels
for an electron pair in three identical dots separated by barriers of
width b = 6 nm as a function of an electric field along the growth
direction. The black solid curve shows the exchange energy (referred
to the right axis).
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Figure 14. Wavefunctions of the lowest singlet ((a), (b)) and lowest
triplet ((c), (d)) states in an external electric field directed along the
stack of three identical dots.

plot. Its wavefunction does not react to changes in the depth of
the central dot. Note, that the probability density of all the three
excited states tend to the same shape with increasing depth of
the central dot.

The energy levels as function of �V are displayed in
figure 15. We note that the energy levels of the three excited
states become degenerate at large �V , in accordance with the
increasing similarity of the probability densities. The energy
of the even-parity triplet state is exactly linear in �V (rigid
wavefunction effect). The exchange energy is increased by a
factor of 9 when �V is changed from 0 to 36 meV.

In the stack with a deeper central dot the lowest-energy
triplet is nearly degenerate with respect to the parity. The
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Figure 15. The same as figure 13 but as function of the depth of the
central dot.

Figure 16. The same as figure 13 but for a central dot which is
deeper by �V = 40 meV with respect to the others.

electric field easily mixes these two triplets, and therefore
the reaction of the lowest triplet to the electric field is quite
prompt. Figure 13 shows the energy spectrum as function of
the electric field. Mixing of the triplets is visible as a narrow
avoided crossing of dashed curves near F = 0. Outside of
the avoided crossing area the triplet state becomes a linear
function of F . The wavefunction of the lowest energy triplet
state in the presence of an external electric field is displayed in
figures 14(c), (d).

The dependence of the lowest singlet (ground-state) state
on the electric field is weaker. The electric field tends to
remove electrons from the central dot which is the deepest (see
figure 14), hence the retarded reaction with respect to the triplet
state, which results in a maximum of the exchange energy at
F = 0 (in the stack of identical three and two dots F = 0
corresponds to the minimum of the exchange energy). J has
two minima near F = ±30 kV cm−1. It starts to increase with
|F | when the two electrons in the singlet occupy the extreme
dot of the stack, which is not allowed for the triplet.
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Figure 17. The same as figure 14 but for a central dot that is deeper
by �V = 40 meV.

4. Discussion

In vertically coupled self-assembled quantum dots the low-
energy part of the spectrum consists of three singlets and a
single triplet state. We demonstrated that both the electron–
electron interaction and the external electric field leads to
mixing of the singlet energy levels while the modification
of the triplet spatial wavefunction due to both the electron–
electron interaction and the electric field is negligible, since the
triplet has no low-energy counterpart to mix with. The Pauli
exclusion principle which prevents electrons with a symmetric
spin wavefunction to occupy the same spatial position in
the case of small quantum dots results in a separation of
electrons into different dots. On the other hand electrons in
the singlet react promptly to the external electric field tending
to occupy both the dots favored by the electric potential.
The different dependence of the singlet and triplet to the
electric field in double dots results in an enhancement of the
exchange interaction. For identical self-assembled dots an
electric field parallel to the axis of the stack always enhances
the exchange energy. On the other hand for non-identical
dots the electric field enhances or reduces the exchange energy
depending on its orientation. The exchange energy is reduced
by a weak electric field oriented in a way that compensates
the non-equal confinement of the dots and it is enhanced
for the opposite orientation increasing the asymmetry of the
confinement potential. For the first orientation, the exchange
energy starts to increase with the value of the field only when
the shallower dot is made lower in the energy by the electric
potential. This results in a occurrence of a minimum of the
exchange energy for a non-zero F .

For a stack of three identical dots the triplet wavefunction
is no longer independent of the electron–electron interaction
and the external electric field. The dependence of the exchange
energy in the case of three identical dots on the external electric
field is similar to the double-dot system. We demonstrated

that it can be strongly enhanced by making the central dot
deeper than the top and bottom dots of the stack due to the
Pauli exclusion principle. Moreover, increasing the depth of
the central dot leads to a degeneracy of the lowest triplet states
and to an increase the energy spacing between the ground-state
and the lowest excited singlet. For that reason, in contrast to
the double-dot system, the dependence of the triplet state on
the external field is larger than for the singlet. The exchange
interaction is therefore strongest for F = 0. The exchange
energy has minima at both electric field orientations before it
eventually starts to increase. This increase occurs when the
electric field localizes both singlet electrons in the extreme dots
of the stack.

5. Summary and conclusions

In summary we investigated an electron pair in a double and
triple vertical stack of self-assembled quantum dots using
the configuration-interaction approach and a three-dimensional
model of the system. Effects of the non-perfect alignment of
the dots and unequal depths of the dots within the stack were
discussed. Particular attention was paid to the manipulation
of the electrons by an external electric field oriented along the
axis of the stack. We discussed the effects of the interaction
and the electric field on the singlet and triplet energy levels as
well as on the exchange interaction. As long as the electric
field is oriented along the axis of the stack the non-perfect
alignment of the dots results in a reduction of the interdot
tunnel coupling which typically amounts in a reduction of the
exchange energy. Non-perfect alignment only has a qualitative
effect on the exchange energy when the electric field is oriented
perpendicular to the axis of the stack.

The presented results indicate that the exchange energy
is sensitive to the details of the confinement of the coupled
dot system and can be conveniently controlled by the external
electric field. In particular for weakly coupled dots the external
electric field can be used to switch on the exchange interaction,
which in the absence of the field is zero due to the perfect
separation of electrons in different dots. The values of the
exchange energy obtained for the stacked dots are by two
orders of magnitude larger than the ones obtained for lateral
electrostatic dots.
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